An economical multi-channel cortical electrode array for extended periods of recording during behavior.
نویسندگان
چکیده
We report the development of a low-cost chronic multi-channel microwire electrode array for recording multi-unit cortical responses in behaving rodents. The design was motivated by three issues. First, standard connector systems tended to disconnect from the head-stage during extended periods of behavior. Disconnections resulted in a loss of data and an interruption of the animals' behavior. Second, the use of low insertion force connectors with locking mechanisms was cost prohibitive. Finally, connecting the head-stage to a skull-mounted connector on an unrestrained animal was highly stressful for both the researcher and animal. The design developed uses a high insertion force DIP socket separated from the skullcap that prevents inadvertent disconnects, is inexpensive, and simplifies connecting unrestrained rodents. Electrodes were implanted in layer IV of primary auditory cortex in 11 Sprague-Dawley rats. Performance of the electrodes was monitored for 6 weeks. None of the behaving animals became disconnected from the recording system during recording sessions lasting 6 h. The mean signal-to-noise ratio on all channels (154) following surgery was 3.9+/-0.2. Of the 154 channels implanted, 130 exhibited driven activity following surgery. Forty percent of the arrays continued to exhibit driven neural activity at 6 weeks.
منابع مشابه
Cortical signal recording using an economical microelectrode fabricated on printed circuit board
This work presents a simple, flexible and economical microwire array electrode for extracellular cortical recordings. The proposed procedure is relatively simple, even for a novice worker to implement in-house. These main steps include design and sculpturing PCB, straightening microwires, connecting PCB pattern, arraying and soldering microwires and packaging the microelectrode. A practiced res...
متن کاملMulti-electrode arrays technology for the non-invasive recording of neural signals: a review article
The recording of electrophysiological activities of brain neurons in the last half-century has been considered as one of the effective tools for the development of neuroscience. One of the techniques for recording the activity of nerve cells is the multi-electrode arrays (MEAs). Microelectrode arrays (MEAs) are usually employed to record electrical signals from electrogenic cells like neurons o...
متن کاملElectrode fabrication and implantation in Aplysia californica for multi-channel neural and muscular recordings in intact, freely behaving animals.
Recording from key nerves and muscles of Aplysia during feeding behavior allows us to study the patterns of neural control in an intact animal. Simultaneously recording from multiple nerves and muscles gives us precise information about the timing of neural activity. Previous recording methods have worked for two electrodes, but the study of additional nerves or muscles required combining and a...
متن کاملWireless multi-channel single unit recording in freely moving and vocalizing primates.
The ability to record well-isolated action potentials from individual neurons in naturally behaving animals is crucial for understanding neural mechanisms underlying natural behaviors. Traditional neurophysiology techniques, however, require the animal to be restrained which often restricts natural behavior. An example is the common marmoset (Callithrix jacchus), a highly vocal New World primat...
متن کاملA comparison of chronic multi-channel cortical implantation techniques: manual versus mechanical insertion.
High-density multi-channel intra-cortical electrode arrays allow researchers to record simultaneously from populations of neurons for the purpose of understanding neural coding and plasticity. These devices have tens to hundreds of electrodes spaced within a few square millimeters. During insertion, the high-density probes can compress the cortex several millimeters prior to breaking through th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neuroscience methods
دوره 142 1 شماره
صفحات -
تاریخ انتشار 2005